# THEORY of STRUCTURES Interview Questions

Posted On:February 1, 2019, Posted By: Latest Interview Questions, Views: 357, Rating :     ## Best THEORY of STRUCTURES Interview Questions and Answers

Dear Readers, Welcome to THEORY of STRUCTURES Interview Questions and Answers have been designed specially to get you acquainted with the nature of questions you may encounter during your Job interview for the subject of THEORY of STRUCTURES. These THEORY of STRUCTURES Questions are very important for campus placement test and job interviews. As per my experience good interviewers hardly plan to ask any particular questions during your Job interview and these model questions are asked in the online technical test and interview of many IT & Non IT Industries.

### P=4²EI/L² is the equation of Euler’s crippling load if

A. Both the ends are fixed

B. Both the ends are hinged

C. One end is fixed and other end is free

D. One end is fixed and other end is hinged

ANS: A ### Pick up the correct statement from the following:

A. The structural member subjected to compression and whose dimensions are small as

B. compared to its length, is called a stmt

The vertical compression members are generally known as columns or stanchions

C. Deflection in lateral direction of a long column, is generally known as buckling

D. All the above

ANS: D

### 0y/n [1 – a (1/r)²]is the empirical formula, For calculating the allowable stress of long columns known as

A. Straight line formula

B. Parabolic formula

C. Perry’s formula

D. Rankine’s formula

ANS: B

### Maximum principal stress theory for the failure of a material at elastic point, is known

A. Guest’s or Trecas’ theory

B. St. Venant’s theory

C. Rankine’s theory

D. Von Mises’ theory

ANS: C

### Pick up the correct statement from the following:

A. The moment of inertia is calculated about the axis about which bending takes place

B. If tensile stress is less than axial stress, the section experiences compressive stress

C. If tensile stress is equal to axial stress, the section experiences compressive stress

D. All the above

ANS: D

### A composite beam is composed of two equal strips one of brass and other of steel. If the temperature is raised

A. Steel experiences tensile force

B. Brass experiences compressive force

C. Composite beam gets subjected to a couple

D. All the above

ANS: D

### A shaft subjected to a bending moment M and a torque T, experiences

A. Maximum bending stress = 32M d3

B. Maximum shear stress = 16 T d3

C. Both A. and B.

D. Neither A. nor B.

ANS: C

A. /4h thrust is

B. /8h

C. /12h

D. /16h

ANS: D

### The horizontal thrust on the ends of a two hinged semicircular arch of radius carrying

A. A uniforml 4/3

B. end, is

C. All the above

ANS: C

### Maximum strain theory for the failure of a material at the elastic limit, is known as

A. Guest’s or Trecas’ theory

B. St. Venant’s theory

C. Rankine’s theory

D. Haig’s theory

ANS: B

### Slenderness ratio of a long column, is

A. Area of cross-section divided by radius of gyration

B. Area of cross-section divided by least radius of gyration

C. Radius of gyration divided by area of cross-section

D. Length of column divided by least radius of gyration

ANS: D

### A close coil helical spring when subjected to a moment M having its axis along the axis of the helix

A. It is subjected to pure bending

B. Its mean diameter will decrease

C. Its number of coils will increase

D. All the above

ANS: A

A. 1/4

B. 1/2

C. 1

D. 2

ANS: D

### Maximum shear stress theory for the failure of a material at the elastic limit, is known

A. Guest’s or Trecas’ theory

B. St. Venant’s theory

C. Rankine’s theory

D. Haig’s theory

ANS: A

A. ML/EI

B. ML/2EI

C. ML²/2EI

D. ML²/3EI

ANS: D

### Pick up the correct statement from the following:

A. For channels, the shear centre does not coincide its centroid

B. The point of intersection of the bending axis with the cross section of the beam, is called shear centre

C. For I sections, the shear centre coincides with the centroid of the cross section of the beam

D. All the above

ANS: D

### If a three hinged parabolic arch, (span l, rise h) is carrying a uniformly distributed load w/unit length over the entire span,

A. Horizontal thrust is wl2/8h

B. S.F. will be zero throughout

C. B.M. will be zero throughout

D. All the above

ANS: D

### The force in BC of the truss shown in the given figure, is

A. 3.0 t compression

B. 3.0 t tension

C. t tension

D. t compression

ANS: C

### P = / L² is the equation for Euler’s crippling load if

A. Both the ends are fixed

B. Both the ends are hinged

C. One end is fixed and other end is free

D. One end is fixed and other end is hinged

ANS: B

A. Zero

B. 1

C. 2

D. 3

ANS: B

### The forces in the members of simple trusses, may be analysed by

A. Graphical method

B. Method of joints

C. Method of sections

D. All the above

ANS: D

A. 2/3

B. 3/2

C. 5/8

D. 8/5

ANS: D

### A road of uniform cross-section A and length L force P. The Young’s Modulus E of the material, is

A. E = /A. L

B. E =/P. L

C. E = P. L/

D. E = P. A/ ANS: C

A. L/2

B. L/3

C. L/4

D. L/5

ANS: D

### The yield moment of a cross section is defined as the moment that will just produce the yield stress in

A. The outer most fibre of the section

B. The inner most fibre of the section

C. The neutral fibre of the section

D. The fibre everywhere

ANS: A

A. (IX + IY)/2

B. (IX – IY)/2

C. IX + IY

D. (I /I )

ANS: C

A. wa/27

B. wa²/27

C. w²a

D. wa²

ANS: D

### If E, N, K and 1/m are modulus of elasticity, modulus of rigidity. Bulk modulus and Poisson ratio of the material, the following relationship holds good

A. E = 3K (1 – 2/m)

B. E = 2N (1 + 1/m)

C. (3/2)K (1 – 2/m) = N (1 + 1/m)

D. All the above

ANS: D

### The forces acting on the bar as shown in the given figure introduce

A. Compressive stress

B. Tensile stress

C. Shear stress

D. None of these

ANS: C

### Q No: 31

A. Magnitude

B. Direction

C. Point of application

D. All the above

ANS: D

### A body is said to be in equilibrium if

A. It moves horizontally

B. It moves vertically

C. It rotates about its C.G.

D. None of these

ANS: D

### Pick up the incorrect statement from the following: The torsional resistance of a shaft is directly proportional to

A. Modulus of rigidity

B. Angle of twist

C. Reciprocal of the length of the shaft

D. Moment of inertia of the shaft section

ANS: D

### The forces acting normally on the cross section of a bar shown in the given figure introduce

A. Compressive stress

B. Tensile stress

C. Shear stress

D. None of these

ANS: B

A. ½

B. 1

C. 1½

D. 2

ANS: D

### The load on a spring per unit deflection, is called

A. Stiffness

B. Proof resilience

C. Proof stress

ANS: A

### A compound bar consists of two bars of equal length. Steel bar cross -section is 3500 mm2and that of brass bar is 3000 mm2. These are subjected to a compressive load 100,000 N. If Eb = 0.2 MN/mm2 and Eb = 0.1 MN/mm2, the stresses developed are:

A. b = 10 N/mm2 s = 20 N/mm 2

B. b = 8 N/mm2 s = 16 N/mm2

C. b = 6 N/mm2 s = 12 N/mm2

D. b = 5 N/mm2 s = 10 N/mm2

ANS: A

A. 4WD²n/d4N

B. 4W²Dn/d4N

C. 4W²D3n/d4N

D. 4W²D3n²/d4N

ANS: C

A. 1

B. 2

C. 3

D. Zero ANS: C

A. bh²/12

B. b²h/12

C. bh3/12

D. b3h/12

ANS: C

### The assumption in the theory of bending of beams is:

A. Material is homogeneous

B. Material is isotropic

C. Young’s modulus is same in tension as well as in compression

D. All the above

ANS: D

A. Joint C

B. Joint B

C. Joint D

D. Joint A

ANS: C

A. 1

B. 2

C. 3

D. 4

ANS: D

A. 4.0 mm

B. 4.5 mm

C. 5.0 mm

D. 5.5 mm

ANS: C

A. wl3/3EI

B. wl4/3EI

C. wl4/8EI

D. wl4/12EI

ANS: C

### A compound truss may be formed by connecting two simple rigid frames, by

A. Two bars

B. Three bars

C. Three parallel bars

D. Three bars intersecting at a point

ANS: B

### The forces acting normally on the cross section of a bar shown in the given figure introduce

A. Compressive stress

B. Tensile stress

C. Shear stress

D. None of these

ANS: A

A. 25 N

B. 30 N

C. 35 N

D. 40 N

ANS: C

A. 0.001

B. 0.002

C. 0.0025

D. 0.003

ANS: C

### The strain energy stored in a spring when subjected to greatest load without being permanently distorted, is called

A. Stiffness

B. Proof resilience

C. Proof stress

ANS: B

A. A joint

B. B joint

C. C joint

D. D joint

ANS: C

### The strain energy due to volumetric strain

A. Is directly proportional to the volume

B. Is directly proportional to the square of exerted pressure

C. Is inversely proportional to Bulk modulus

D. All the above

ANS: D

A. L/d

B. L/2d

C. (L/2d)²

D. (L/3d)²

ANS: C

A. 0.207

B. 0.307

C. 0.407

D. 0.508

ANS: A

### In the truss shown in given figure the force in member DC is

A. 100 t compressive

B. 100 t tensile

C. Zero

D. Indeterminate

ANS: C

### Pick up the correct statement from the following:

A. A wire wound in spiral form, is called a helical spring

B. The pitch of a close coil spring, is very small

C. The angle made by the coil with horizontal, is called the angle of helix

D. All the above

ANS: D

### The ratio of lateral strain to axial strain of a homogeneous material, is known

A. Yield ratio

B. Hooke’s ratio

C. Poisson’s ratio

D. Plastic ratio

ANS: C

A. 2/3

B. 3/2

C. 8/5

D. 5/8

ANS: C

### The force in BF of the truss shown in given figure, is

A. 4t tension

B. 4t compression

C. 4.5t tension

D. 4.5t compression

ANS: D

Q No: 65

A. Depth d M

B. Depth d 3

C. Depth d

D. Depth d 1/M

ANS: B

A. 2/3

B. 3/2

C. 3/4

D. 4/3

ANS: D

### For calculating the permissible stress 0 y /[(1 + a(l/r)²] is the empirical formula, known as

A. Straight line formula

B. Parabolic formula

C. Perry’s formula

D. Rankine’s formula

ANS: D

### Pick up the correct statement from the following:

A. In a loaded beam, the moment at which the first yield occurs is called yield moment

B. In a loaded beam, the moment at which the entire section of the beam becomes fully plastic, is called plastic moment

C. In a fully plastic stage of the beam, the neutral axis divides the section in two sections of equal area

D. All the above

ANS: D

A. 0.303

B. 0.404

C. 0.505

D. 0.707

ANS: D

### Pick up the correct statement from the following:

A. Mcg = M M2 + r2) where letters carry their usual meanings

B. Tcp = m2 + T2)where letters carry their usual meanings

C. The torque which when acting alone would produce maximum shear stress equal to the maximum shear stress caused by the combined bending and torsion, is called equivalent torque

D. All the above

ANS: D

### m1 and m2 are the members of two individual simple trusses of a compound truss. The compound truss will be rigid and determinate if

A. m = m1 + m2

B. m = m1 + m2 + 1

C. m = m1 + m2 + 2

D. m = m + m + 3

ANS: D

A. l/4

B. h/4

C. l

D. l

ANS: C

### The greatest load which a spring can carry without getting permanently distorted, is called

A. Stiffness

B. Proof resilience

C. Proof stress

ANS: D

### The force in AC of the truss shown in the given figure, is

A. 5t tension

B. 4t tension

C. 4t compression

D. 5t compression

ANS: B

A. WL/2AE

B. WL/AE

C. W²L/AE

D. W²L/2AE

ANS: D

A. WI/2

B. WI²/4

C. WI²/8

D. WI²/12

ANS: C

A. Wa/h

B. Wa/2h

C. 2W/ha

D. 2h/Wa

ANS: B

### The force in CD of the truss shown in given figure, is

A. 3t compression

B. 3t tension

C. Zero

D. 1.5t compression

ANS: C

### At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of the section by

A. Depth of the section

B. Depth of the neutral axis

C. Maximum tensile stress at the section

D. Maximum compressive stress at the section

ANS: B

A. 4

B. 8

C. 12

D. 16

ANS: D

A. 1

B. 1.25

C. 1.5

D. 2.5

ANS: C

### In the truss shown in the given figure, the force in member BC is

A. 100 t compressive

B. 100 t tensile

C. Zero

D. Indeterminate

ANS: C

A. 264 MN

B. 274 MN

C. 284 MN

D. 294 MN

ANS: C

A. 1.4

B. 1.5

C. 1.6

D. 1.7

ANS: B

A. 75 N/m2

B. 750 N/m 2

C. 7500 N/m 2

D. 75000 N/m2

ANS: C

### A material is said to be perfectly elastic if

A. It regains its original shape on removal of the load

B. It regains its original shape partially on removal of the load

C. It does not regain its original shape at all

D. None of these

ANS: A

### A shaft rotating N.R.M. under a torque T, transmits a power

A. /30 Newton metres/sec

B. /30 Newton metres/min

C. /60 Newton metres/min

D. /60 Newton metres/sec

ANS: A

A. Q = S + F

B. Q = S – F

C. Q = F – S

D. Q = S × F

ANS: D

A. WL²/2EI

B. WL²/3EI

C. WL3/2EI

D. WL3/3EI

ANS: D

### Pick up the correct statement from the following:

A. For a uniformly distributed load, the shear force varies linearly

B. For a uniformly distributed load, B.M. curve is a parabola

C. For a load varying linearly, the shear force curve is a parabola

D. All the above

ANS: D

A. 1/2

B. 2/3

C. 1/4

D. 1/3

ANS: B

A. 200 mm

B. 250 mm

C. 300 mm

D. 400 mm

ANS: D

### The force in EC of the truss shown in the given figure, is

A. Zero

B. 5t tension

C. 5t compression

D. 4t tension

ANS: C

A. (1/3) A

B. (1/6) A

C. (1/12) A

D. (1/18) A

ANS: D

A. D4 – d4)

B. D4 – d4)

C. D4 – d4)

D. D4 – d4)

ANS: D

### The force in AD of the truss shown in given figure, is

A. 4.0t compression

B. 3.0t compression

C. 0.5t compression

D. 0.5t tension ANS: C

A. 2 L

B. L

C. L/2

D. L

ANS: D

### static equations i.e. H V M = 0, to a determinate structure, we may By applying the determine

A. Supporting reactions only

B. Shear forces only

C. Bending moments only

D. All the above

ANS: D

### A lift of weight W is lifted by a rope with an acceleration f. If the area of cross-section of the rope is A, the stress in the rope is

A. [W (1 + f/ G)]/ A

B. (1 – g/f)/A

C. [W (2 + f/G)]/A

D. [W (2 + g/f)]/A

ANS: A

A. 1/2

B. 1/3

C. 2/3

D. 3/2

ANS: C