Dear Readers, Welcome to Process Instrumentation and Control Interview Questions and Answers have been designed specially to get you acquainted with the nature of questions you may encounter during your Job interview for the subject of Process Instrumentation and Control Interview Questions. These Process Instrumentation and Control Questions are very important for campus placement test and job interviews. As per my experience good interviewers hardly plan to ask any particular questions during your Job interview and these model questions are asked in the online technical test and interview of many IT & Non IT Industries.
(a) sensor
(b) transducer
(c) gauge
(d) instrument
(e) indicator.
Ans: d
(a) direct measurement
(b) indirect measurement
(c) measurement by comparison
(d) measurement by calibration
(e) automatic measurement.
Ans: b
(a) accuracy
(b) precision
(c) sensitivity
(d) resolution
(e) discrimination.'
Ans: a
(a) static errors
(b) systematic errors
(c) calibration errors
(d) random errors
(e) known errors.
Ans: b
(a) instrument
(b) indicator
(c) transducer
(d) gauge
(e) recorder.
Ans: b
(a) analog
(b) digital
(c) display
(d) indicator
(e) instrument.
Ans: a
(a) pulse train
(b) digital
(c) analog
(d) numeral
(e) recording.
Ans: b
(a) indicator
(b) digital indicator
(c) recorder
(d) integrator
(e) analog indicator.
Ans: c
(a) accuracy
(b) error
(c) sensitivity
(d) resolution
(e) precision.
Ans: e
(a) sensitivity
(b) precision
(c) resolution
(d) threshold
(e) accuracy.
Ans: a
(a) accuracy
(b) precision
(c) amplification
(d) resolution
(e) sensitivity.
Ans: d
(a) sensing element
(b) transducer
(c) transmitter
(d) indicator
(e) measuring device.
Ans: a
(a) event counter
(b) mechanical counter
(c) magnetic pick up
(d) photoelectric cell
(e) electronic counter.
Ans: d
(a) charging of a condenser
(b) flow of oil through a dash pot
(c) release of air through a nozzle
(d) flow of sand through an opening
(e) piezoelectric crystal.
Ans: e
(a) stroboscope
(b) piezoelectric crystal
(c) electronic timer
(d) chronometer
(e) photovoltaic cell.
Ans: a
(a) potentiometer
(b) synchro
(c) collimator
(d) protractor
(e) dial gauge.
Ans: b
(a) piezoelectric
(b) strain gauge
(c) photovoltaic
(d) pneumatic gauging
(e) change of capacitance.
Ans: a
(a) measure of an equivalent height of liquid column
(b) measure of the force exerted on a fixed area
(c) measure of some change in electrical or physical characteristics of the fluid
(d) area measurement by polar planimeter
(e) all of the above.
Ans: d
(a) force
(b) pressure
(c) temperature
(d) level
(e) displacement.
Ans: a
(a) inclining the manometer rube
(b) using low specific gravity fluid
(c) application of optical magnification
(d) use of level sensing device
(e) all of the above.
Ans: a
(a) manometer
(b) diaphragm
(c) bellows
(d) dead weight pressure tester
(e) piezoelectric crystal.
Ans: d
(a) dead weight tester
(b) pirani gauge
(c) ionization gauge
(d) McLeod gauge
(e) absolute pressure sensor.
Ans: c
(a) Have high creep strength to withstand high temperature
(b) Be stable enough to maintain its calibration indefinitely
(c) Be immune to corrosion from the fluid inside the tube, and from the atmosphere outside it
(d) Be hard enough to withstand the ap-plied pressure without any part of it being stressed above the limit of proportionality
(e) Be easy to fabricate.
Ans: a
(a) using proper tube material
(b) using proper diameter and thickness of tube
(c) avoiding temperature cycling
(d) using it well within the designed pres¬sure range
(e) using separating diaphragm and avoid direct ingress of hot. fluid to tube
Ans: d
(a) low pressure is normally measured by manometers
(b) medium pressure by diaphragms or bellows
(c) medium and high pressure by Bourdon gauge
(d) all pressures by transducers
(e) absolute pressure by piezoelectric crystal.
Ans: e
(a) the tubes or bellows which operate them would be overheated, causing serious error and damage
(b) steam if leaks, can cause serious injuries to operators
(c) entry of steam would cause static head error
(d) parts of pressure gauge can't withstand temperature of steam
(e) pressure gauges are not calibrated to measure steam pressure directly.
Ans: a
(a) steam can condense to form a seal of water to fill the tube or bellows at the pressure being measured
(b) air or vapour collection is avoided
(c) moisture formed in pipe can be drained
(d) static head errors are eliminated
(e) it acts as dampener and does not pass on pressure variations to sensor.
Ans: a
(a) no air or vapour can collect in pipe
(b) any moisture can be drained '
(c) moisture does not come in contact with elements of sensor/gauge
(d) moisture can condense to form seal of water
(e) static head error due to moisture is eliminated.
Ans: b
(a) absolute pressure
(b) vacuum
(c) differential pressure
(d) temperature
(e) gauge pressure.
Ans: c
(a) active diameter of diaphragm (D)
(b) D
(c) D2
(d) D3
(e) D4
Ans: e
(a) diaphragm
(b) capsule
(c) bourdon
(d) ring balance
(e) all of the above.
Ans: b
(a) displacement
(b) force
(c) velocity
(d) acceleration
(e) shock.
Ans: b
(a) accuracy of the order of 0.01 to 1%
(b) rugged and compact construction
(c) no moving parts and negligible deflec-tion under load
(d) low resistance to side load and low overload withstand
(e) hermetically sealed and thermal com-pensation.
Ans: d
(a) lever balance
(b) spring balance
(c) proving ring
(d) piezo-electric transducer
(e) all of the above.
Ans: d
(a) selecting proper material
(b) proper design and fabrication
(c) using them well within the designed pressure range
(d) avoiding direct entry of steam into it
(e) calibrating it from time to time.
Ans: c
(a) increase life
(b) enable high repeatable readings
(c) eliminate premature failures
(d) increase accuracy
(e) avoid drift.
Ans: b
(a) ± 1.5%
(b) ± 1%
(c) ± 0.5%
(d) ± 0.25%
(e) ±0.1%.
Ans: d
(a) thermocouple gauge
(b) Bourdon gauge
(c) Ionization gauge
(d) nuitating disk gauge
(e) Pirani gauge.
Ans: e
(a) radiation pyrometers
(b) optical pyrometers
(c) thermistors
(d) platinum resistance detectors
(e) thermocouples.
Ans: c
(a) thermocouple
(b) resistance thermometer
(c) bulb thermometer
(d) bimetal element
(e) zener diode.
Ans: d
(a) thermocouple
(b) thermopile
(c) thermistor
(d) zener diode
(e) resistance thermometer.
Ans: a
(a) thermo pile
(b) bolometer
(c) radiation pyrometer
(d) thermistor
(e) optical pyrometer.
Ans: b
(a) mercury
(b) alcohol
(c) toluene
(d) pentane
(e) creosote.
Ans: a
(a) mercury
(b) alcohol
(c) toluene
(d) pentane
(e) creosote.
Ans: d
(a) lead glass
(b) normal grade
(c) borosilicate
(d) supermax
(e) any one of the above.
Ans: d
(a) remote indication of temperature can't be given
(b) error is produced if capillary passes through hot zone
(c) error also occurs if instrument base is at high ambient temperature
(d) error can also creep in by the head of the liquid if the bulb is installed either above or below the Bourdon
(e) these are used for industrial applications where accuracy is not so important.
Ans: a
(a) is the standard practice of making junction
(b) would result in noise generation
(c) cause small errors due to local e.m.f. which may arise if the junction is too long
(d) would slow down the response
(e) result in inaccuracies.
Ans: c
(a) copper-constantan
(b) iron-constantan
(c) chromel-alumel
(d) platinum-rhodium platinum
(e) silver-palladium.
Ans: b
(a) temperature rise
(b) dust and dirt
(c) moisture
(d) ageing
(e) shorting by conductive contact.
Ans: c
(a) 0.1 to 1 ohm
(b) 1 to 10 ohm
(c) 10 to 100 ohm
(d) 100 to 2000 ohm
(e) 2000 to 105 ohm
Ans: d
(a) 0.1 to 1 sec
(b) 1 to 2.5 sec
(c) 2.5 to 10 or 20 sec
(d) 25 to 100 sec
(e) 100 to 500 sec.
Ans: c
(a) copper-constantan thermocouple is a stable couple resistant to both oxidising and reducing atmosphere, but needs protection from acidic vapours
(b) Iron-constantan thermocouple suffers from oxidation attack on iron wire, if exposed
(c) iron-constantant couple can be made stable by using enamelled iron
(d) Both wires of chromel-alumel ther-mocouples are prone to damage by sulphurous gases
(e) copper-constantan thermocouple is used as a reference standard for calibration purposes.
Ans: e
(a) connecting thermocouple wires, in op-position
(b) a nickel wire resistance in series with a manganin resistance
(c) maintaining cold junction temperature constant by a cooling unit
(d) using a photovoltaic cell
(e) connecting a dry battery cell in opposition.
Ans: b
(a) copper
(b) nickel
(c) platinum
(d) any one of above
(e) none of above.
Ans: d
(a) 0.1 raA
(b) 1 mA
(c) 5 mA
(d) 20 mA
(e) 50 mA.
Ans: c
(a) ice point (0°C)
(b) steam point (100°C)
(c) sulphur point (444.6°C)
(d) all of the above
(e) none of the above.
Ans: d
(a) water is used for temperatures from 0 to I00°C
(b) special grade of paraffin oil is used for temperatures between 100 and 200°C
(c) For temperature between 200 and 600°C, a mixture of sodium nitrate and potassium nitrate is used
(d) all of above are true
(e) none of above is true.
Ans: d
(a) pitot tube
(b) venturi tube
(c) orifice plate
(d) vena contracta device
(e) nozzle.
Ans: a
(a) 25 mm from each side of the orfice plate
(b) D (pipe diameter) upstream and D/2 downstream
(c) just at surface of orifice plate
(d) 2.5 D upstream and 8 D downstream
(e) any one of the above.
Ans: a
(a) D upstream and D downstream from the plate
(b) D upstream and at vena contracta
(c) 2 D upstream and at vena contracta
(d) just at surface of plate upstream and at vena contracta
(e) any one of the above.
Ans: b
(a) 5%
(b) 10%
(c) 20%
(d) 35%
(e) 50%.
Ans: e
(a) 5%
(b) 10%
(c) 20%
(d) 30%
(e) 40%.
Ans: b
(a) no moving parts
(b) long-term reliability
(c) highturn-down ratio
(d) inexpensive
(e) inherently simple in operation.
Ans: c
(a) square root relationship
(b) poor turn-down ratio
(c) critical installation requirements
(d) short-term reliability
(e) high irrecoverable pressure loss.
Ans: d
(a) orifice plate
(b) nozzle
(c) venturi tube
(d) rotameter
(e) pitot-tube.
Ans: c
(a) flow
(b) pressure
(c) viscosity
(d) density
(e) level.
Ans: a
(a) 0.1%
(b) 0.2%
(c) 0.5%
(d) 1%
(e) 2%.
Ans: d
(a) Ledoux bell
(b) variable area
(c) straightening vane
(d) variable head
(e) vane-type.
Ans: b
(a) nozzle
(b) orifice plate
(c) propeller
(d) weir
(e) vortex-shedding meter.
Ans: d
(a) vane-type or anemometer
(b) electro magnetic flow meter
(c) vortex-shedding meter
(d) ultrasonic flow meter
(e) pitot tube.
Ans: a
(a) pressure
(b) velocity
(c) level
(d) density
(e) temperature.
Ans: b
(a) orifice plate
(b) nozzle
(c) variable orifice meter
(d) venturi tube
(e) Dall tube.
Ans: e
(a) positive displacement type
(b) nutating disc type
(c) sliding vane type
(d) turbine type
(e) hydraulic flume.
Ans: e
(a) force measuring devices
(b) torque measuring devices
(c) power measuring devices
(d) energy measuring devices
(e) displacement measuring devices.
Ans: c
(a) wheatstone bridge
(b) katharometer
(c) attenuator
(d) amplifier
(e) Kelvin bridge.
Ans: b
(a) oxygen
(b) ozone
(c) nitrogen
(d) nitrogen oxides
(e) hydrocarbons.
Ans: a
(a) oxygen
(b) ozone
(c) sulphur oxides
(d) nitrogen oxides
(e) pollutants.
Ans: b
(a) flow
(b) 1/flow
(c) Vflow
(d) 1/Vfl ow
(e) 1/flow3/2.
Ans: b
(a) rotational devices
(b) flow through restrictions
(c) flow around obstructions
(d) all of above
(e) none of above.
Ans: d
(a) 02 content in flue gases
(b) C02 content in flue gases
(c) CO content in flue gases
(d) amount of individual gases in a mixture
(e) amount of elements in an alloy.
Ans: d
(a) smoke density
(b) S02 and S03
(c) NO,
(d) CO
(e) dust concentration.
Ans: a
(a) percentage of H2 in solution
(b) power of the hydrogen ion concentration
(c) presence of hydrogen ions
(d) purity of H20
(e) none of the above.
Ans: b
(a) weight
(b) buoyancy
(c) hydrostatic head
(d) resonant elements
(e) all of above.
Ans: e
(a) density
(b) viscosity
(c) chemical analysis
(d) PH
(e) all of above.
Ans: d
(a) glass electrode
(b) solid state electrode
(c) liquid ion exchange electrode
(d) redox electrode
(e) heterogeneous membrane electrode.
Ans: a
(a) 7 g of ionized hydrogen per litre
(b) 10 g of ionized hydrogen in/m
(c) 1CT7 % of ionized hydrogen
(d) 10"7 g of ionized hydrogen per litre
(e) none of the above.
Ans: d
(a) conductivity
(b) pH
(c) dissolved 02 content
(d) turbidity
(e) all of the above.
Ans: a
(a) mho
(b) mho/m
(c) n mho/cm
(d) ohm/m
(e) m mho/mm.
Ans: c
(a) measure surface hardness
(b) measure surface characteristics
(c) measure chemical composition of al-loys
(d) analyse colour spectrum
(e) analyse gas composition.
Ans: d
(a) hydrometer
(b) hygrometer
(c) psychrometer
(d) photometer
(e) all of the above.
Ans: b
(a) chemical analysis of flue gases
(b) moisture in air
(c) composition of alloys
(d) colour spectrum
(e) molecular configuration.
Ans: a
(a) cross-coupling
(b) coupling compliance
(c) influence error
(d) subject loading by sensor
(e) spurious variation in capacitance.
Ans: b
(a) lub oil pressure
(b) vibrations at strategic points
(c) bearing temperature measurement
(d) efficiency and losses of machine
(e) all of above.
Ans: b
(a) displacement
(b) velocity
(c) acceleration
(d) shock
(e) force.
Ans: c
(a) automatic control
(b) feedback control
(c) open feed back control
(d) closed feed back control
(e) self regulation.
Ans: d
(a) automatic regulator
(b) self controller
(c) feedback controller
(d) two-position controller
(e) floating regulator.
Ans: a
(a) rise time
(b) settling time
(c) response time
(d) peak time
(e) proportional time.
Ans: c
(a) corrective action
(b) self regulation
(c) automatic regulation
(d) proportional control action
(e) floating controller action.
Ans: b
(a) set point
(b) deviation
(c) controlled variable
(d) command signal
(e) control agent.
Ans: c
(a) throttling range
(b) disturbance
(c) proportional band
(d) response
(e) deviation.
Ans: a
(a) throttling
(b) floating band
(c) controller band
(d) settling time
(e) proportional band.
Ans: e
(a) floating controller action
(b) proportional-position controller action
(c) proportional-speed floating controller action
(d) two-position controller action
(e) self-regulation controller action.
Ans: a
(a) floating controller action
(b) proportional-position controller action
(c) proportionrl-speed floating controller action
(d) two-position controller action
(e) self-regulation controller action.
Ans: b
(a) its mathematical model
(b) closed-loop feedback control system
(c) steady-state response
(d) transient response
(e) steady-state and transient response.
Ans: e
(a) accuracy with which the output is controlled for a specified input
(b) maximum overshoot
(c) rise time
(d) response time
(e) all of the above.
Ans: a
(a) accuracy
(b) settling time
(c) response time
(d) peak time
(e) maximum overshoot, rise time, and response time.
Ans: e
(a) the existence and magnitude of the Maximum overshoot
(b) the frequency of the transient oscilla-tion
(c) the response time
(d) all of the above
(e) none of the above.
Ans: d
(a) load
(b) power element
(c) resistance
(d) damping
(e) all of the above.
Ans: d
(a) underdamped
(b) over damped
(c) critically damped
(d) damped
(e) without damping.
Ans: a
(a) underdamped system
(b) overdamped system
(c) critically damped system
(d) damped system
(e) non damped system.
Ans: a
(a) frequency response of a system
(b) Nyquist plot
(c) Bode plot
(d) transient response
(e) logarithmic plot.
Ans: a
(a) Response function
(b) lyccitation function
(c) (a)/(b)
(d) (b)/(a)
(e) characteristic equation.
Ans: c
(a) characteristic equation
(b) transfer functions of the components
(c) polar plot
(d) Bode diagram
(e) all of the above.
Ans: b
(a) open-loop frequency response func-tion
(b) transfer functions of system
(c) closed loop frequency response
(d) all of above
(e) none of above.
Ans: a
(a) colorimeter
(b) photometer
(c) electro chemical equipment
(d) conductivity cell
(e) Katharometer.
Ans: a